7 research outputs found

    Nitrogen Use Efficiency in Durum Wheat (Triticum durum Desf.) Grown under Semiarid Conditions in Algeria

    Get PDF
    The proper and sustainable management of nitrogen fertilization is one of the most common problems of cereal cultivation in semiarid regions, which are characterized by a wide variability in climatic conditions. The current work was conducted to evaluate the effects of nitrogen fertilization on the agronomic and economic aspects of durum wheat cultivated under rainfed semiarid conditions in Algeria and to determine the most efficient nitrogen use efficiency (NUE) among four genotypes that are widespread in the country (tall and short, old and modern genotypes). The four genotypes, Bousselam, MBB, Megress, and GTAdur, were investigated under four nitrogen rates from 0 to 120 kg N ha−1 during three cropping seasons (2016 to 2018). The results indicate that the total nitrogen uptake at maturity (NM), nitrogen uptake by grain (NG), nitrogen harvest index (NHI), NUE and its components, such as nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE), were significantly affected by year, genotype, and nitrogen level. From this study, it appears that higher nitrogen rates improved NM and NG. However, no effects on either grain yield or marginal net return (MNR) were observed; conversely, increased nitrogen levels produced a 13% reduction in the economic return. In other words, in the North African environment, the response to nitrogen is more evident in quality than in yield, which in turn is dependent on the yearly weather conditions and cultivated genotypes. Moreover, nitrogen negatively affected NUE and its components (NUpE, NUtE). On average, NUE displayed low values (14.77 kg kg−1), mostly irregular and highly dependent on weather conditions; in the best year, it did not exceed 60% (19.87 kg kg−1) of the global average value of 33 kg kg−1. Moreover, the modern genotypes Megress (tall) and GTAdur (short) showed the best capacity to tolerate different nitrogen conditions and water shortages, providing relatively superior yields, as well as more effective N use from fertilizers and the soil than the other two genotypes

    Infusion Micro-Pump Development Using MEMS Technology

    Get PDF
    International audienceDiabetes is a chronic condition that occurs when the pancreas does not produce enough insulin or when the body cannot effectively use the insulin it produces. People having type 1 diabetes require insulin (10% of all diabetics). People with type 2 diabetes can be treated with oral medication, but may also require insulin; 10% of all type 2 diabetics require insulin. Among the actual different methods to administer insulin (syringes, pens and conventional infusion pumps) a possibility to increase infuser performances is offered by the utilization of silicon based MEMS pumps (Micro- Electro Mechanical Systems). The main two pump families are classified as mechanical and non-mechanical pumps. The former contains check-valve, peristaltic, rectification without valves and rotary ones (“Displacement Pumps”) or Ultrasonic and Centrifugal (“Dynamic Pumps”); the latter consists in Pressure, Concentration, Electrical Potential gradients and Magnetic Potential micro-pumps. The micro-pump described here is an electro-mechanical device actuated with a piezoelectric-element and based on MEMS technology, able to minimize size and costs, offering a high precision pharmacological dispense. Three slices are bonded to reach the final results: top and bottom caps and an intermediate SOI. In case of anodic bonding, top and bottom caps are constituted of micromachined borophosphosilicate wafers, whereas in case of metallic bonding three silicon slices are used. The paper deals with the fabrication evolution of the device according to the different items that had to be faced during development: design, fluidic, mechanical and electrical simulations and characterization, safety requirements and final testing. Built-in reliability is ensured by two inner sensors able to detect any occlusion or malfunctioning and informing so the patient. The result is a compact, core pump chip that can deliver from 0.02 Units of insulin up to 3.6 Units per minute with accuracy better than 5%

    Mechanics of Reversible Unzipping

    Full text link
    We study the mechanics of a reversible decohesion (unzipping) of an elastic layer subjected to quasi-static end-point loading. At the micro level the system is simulated by an elastic chain of particles interacting with a rigid foundation through breakable springs. Such system can be viewed as prototypical for the description of a wide range of phenomena from peeling of polymeric tapes, to rolling of cells, working of gecko's fibrillar structures and denaturation of DNA. We construct a rigorous continuum limit of the discrete model which captures both stable and metastable configurations and present a detailed parametric study of the interplay between elastic and cohesive interactions. We show that the model reproduces the experimentally observed abrupt transition from an incremental evolution of the adhesion front to a sudden complete decohesion of a macroscopic segment of the adhesion layer. As the microscopic parameters vary the macroscopic response changes from quasi-ductile to quasi-brittle, with corresponding decrease in the size of the adhesion hysteresis. At the micro-scale this corresponds to a transition from a `localized' to a `diffuse' structure of the decohesion front (domain wall). We obtain an explicit expression for the critical debonding threshold in the limit when the internal length scales are much smaller than the size of the system. The achieved parametric control of the microscopic mechanism can be used in the design of new biological inspired adhesion devices and machines
    corecore